Beoordeling LVS-toetsen Rekenen-Wiskunde (6)

Corine Treffers

Onderwijskundige | Onderwijsondersteuner | Redactielid bij wij-leren.nl

 

  Geplaatst op 8 november 2022

In het artikel Welk LVS past bij jouw school? - Keuzehulp bij het kiezen van een LVS worden alle toetsen van de huidige toetsaanbieders vergeleken en besproken aan de hand van vijf categorieën: brede vaardigheden, specifieke vaardigheden, afnamemogelijkheden, rapportage en overige criteria. Dit om de keuze voor een LVS te vergemakkelijken. De beoordeling van de inhoud van de LVS-toetsen van de specifieke vaardigheden wordt in een artikelenserie toegelicht. In dit zesde deel wordt de beoordeling van de reken-wiskundetoetsen toegelicht. Hier staat een overzicht van alle artikelen, toetsen en bronnen. 

Rekenen-Wiskunde

Criterium 1

Wordt de betreffende specifieke vaardigheid door de leverancier in het systeem aangeboden?

Boom Ja, door middel van de toets Boom LVS Rekenen-Wiskunde.
Cito Ja, door middel van de toets Rekenen-Wiskunde.
Diataal Ja, door middel van de toets Diacijfer.
IEP Ja, door middel van de toets Rekenen.

Criterium 2

Voor welke leerjaren is de betreffende toets beschikbaar? 

Boom Vanaf leerjaar 3
Cito Vanaf leerjaar 3
Diataal Vanaf leerjaar 3
IEP Vanaf leerjaar 3

Criterium 3

Worden alle elementen van zowel de kerndoelen als de referentieniveaus en/of de leerlijnen en tussendoelen afgedekt door de toets(en) van de betreffende specifieke vaardigheid?

Rekenen gaat over de taal van getallen, hoeveelheden en afmetingen. Deze taal helpt ons om de wereld te duiden en patronen te herkennen (Ros, Hickendorff, Keijzer & Van Luit, 2022). Het einddoel van het rekenonderwijs is daarom ook functionele gecijferdheid. Dit betekent dat leerlingen buiten school en later als volwassenen hun rekenvaardigheid optimaal kunnen gebruiken in dagelijkse situaties. 

Bij functionele rekenwiskundige kennis en vaardigheden worden de volgende domeinen onderscheiden: 

  • Getallen en bewerkingen;
  • Verhoudingen, breuken, decimale getallen en procenten;
  • Meten en meetkunde, waaronder het metriek stelsel, geld en tijd;
  • Verbanden, waaronder data, kans en groei/informatieverwerking (Van Groenestijn, Borghouts & Janssen, 2011).

Dit komt grotendeels overeen met de domeinen die onderscheiden worden in het referentiekader en de tussendoelen (zie hieronder). 

Rekenen is een proces waarin de tastbare wereld om ons heen herordend wordt met tal van bewerkingen en concepten. Het is enorm veelzijdig en is meer dan alleen maar werken met getallen. Zo is er ook ruimtelijk inzicht en inschattingsvermogen bij nodig. In het rekenonderwijs leren leerlingen zich rekenkennis eigen maken waarmee ze passende berekeningen kunnen uitvoeren om tot adequate oplossingen te komen. Hierbij leren leerlingen zowel basiskennis als oplossingsstrategieën te automatiseren. Leerlingen leren daarbij allereerst berekenen en vervolgens probleemoplossend en logisch redeneren (Ros et al., 2022). 

De toetsen rekenen-wiskunde worden beoordeeld aan de hand van het referentiekader, de tussendoelen rekenen-wiskunde voor het primair onderwijs en de kerndoelen Rekenen-Wiskunde. De tussendoelen worden hierbij gebruikt om de domeinen uit het referentiekader verder uit te werken in subdomeinen en onderdelen. 

Referentiekader en tussendoelen

Het referentiekader onderscheidt 4 domeinen: Getallen, Verhoudingen, Meten en meetkunde en Verbanden. Elk domein bestaat uit de volgende onderdelen: 

  1. Notatie, taal en betekenis
  2. Met elkaar in verband brengen 
  3. Gebruiken

Elk onderdeel wordt vervolgens verder onderveeld in de volgende onderdelen, waarbij per onderdeel meerdere doelen worden gegeven:

  • Paraat hebben: kennis van feiten en begrippen, reproduceren, routines, technieken
  • Functioneel gebruiken: kennis van een goede probleemaanpak, het toepassen, het gebruiken binnen en buiten het schoolvak
  • Weten waarom: begrijpen en verklaren van concepten en methoden, kunnen uitleggen, blijk geven van overzicht

De auteurs van de tussendoelen splitsen het domein Getallen uit in de subdomeinen Getalbegrip en Bewerkingen. Het domein Meten en meetkunde wordt uitgesplitst in Meten en meetkunde-Meten en Meten en meetkunde-Meetkunde. Daarnaast wordt elk (sub)domein (behalve het domein Verbanden) uitgesplitst in meerdere onderdelen. Per onderdeel worden verschillende tussendoelen gegeven. Deze tussendoelen en ook de voorbeelden van rekendoelen van het referentiekader worden niet meegenomen in de beoordeling, doordat hiervoor elke vraag apart beoordeeld zou moeten worden. Er wordt daarom alleen beoordeeld of alle (sub)domeinen en onderdelen worden getoetst. Ook de kerndoelen zullen hierdoor globaal worden beoordeeld.

  1. Getallen-Getalbegrip
    • Hele getallen
    • Decimale getallen
    • Breuken
  2. Getallen-Bewerkingen
    • Optellen en aftrekken met hele getallen
    • Optellen en aftrekken met decimale getallen
    • Vermenigvuldigen en delen met hele getallen
    • Vermenigvuldigen en delen met decimale getallen
    • Combinaties van en relaties tussen bewerkingen
    • Bewerkingen met breuken
    • Rekenen met de rekenmachine
  3. Verhoudingen
    • Wiskundetaal bij verhoudingen, breuken en procenten
    • Rekenen met verhoudingen en percentages
      • Rekenen met verhoudingen
      • Rekenen met percentages
    • Relaties tussen verhoudingen, breuken, procenten en decimale getallen
  4. Meten en meetkunde-Meten
    • Meten: lengte en omtrek
    • Meten: oppervlakte
    • Meten: inhoud
    • Meten: gewicht
    • Meten: temperatuur
    • Meten: tijd
    • Meten: geld
    • Meten: combinaties van grootheden
  5. Meten en meetkunde-Meetkunde
    • Meetkunde: oriëntatie in de ruimte
    • Meetkunde: construeren
    • Meetkunde: opereren met vormen en figuren
  6. Verbanden

Kerndoelen Rekenen-Wiskunde

Wiskundig inzicht en handelen

  • Kerndoel 23 - De leerlingen leren wiskundetaal gebruiken.

Bij dit kerndoel gaat het erom dat leerlingen leren hoeveelheden, groottes, vormen en allerlei relaties tussen getallen en tussen objecten in de ruimte te beschrijven, verbanden en eigenschappen weer te geven, erover te communiceren en redeneren en er berekeningen over te maken. Daarbij gebruiken ze wiskundetaal. Dit omvat zowel beschrijvingen in dagelijkse omgangstaal als specifieke wiskunde taal: wiskundige symbolen en notaties (formules), schema’s en modellen, tabellen en grafieken. Lees hier de volledige toelichting en verantwoording van kerndoel 23.

  • Kerndoel 24 - De leerlingen leren praktische en formele rekenwiskundige problemen op te lossen en redeneringen helder weer te geven.

Bij dit kerndoel gaat het erom dat leerlingen leren om een probleem om te zetten in een rekenformule en die vervolgens handig uit het hoofd, met standaard rekenprocedures of met de rekenmachine op te lossen. Hierbij leren leerlingen om te kiezen op welke manier ze dit zullen oplossen. Het oplossen en het weergeven van redeneringen wordt in de kerndoelen 26 tot en met 31 beschreven. Zie de toelichting en verantwoording van kerndoel 24 voor wat praktische en formele rekenwiskundige problemen zijn. 

  • Kerndoel 25 - De leerlingen leren aanpakken bij het oplossen van reken-wiskundeproblemen te onderbouwen en leren oplossingen te beoordelen.

Leerlingen moeten leren om hun redeneringen en berekeningen weer te geven, zodat de denkstappen voor henzelf scherper worden, voor anderen zichtbaar zijn en aangevuld of gecorrigeerd kunnen worden. Dit wordt door middel van interactie met de leerkracht en medeleerlingen ontwikkeld. Uiteindelijk zullen leerlingen uit zichzelf eigen redeneringen en berekeningen controleren. Lees hier de volledige toelichting en verantwoording van kerndoel 25. 

Getallen en bewerkingen

  • Kerndoel 26 - De leerlingen leren structuur en samenhang van aantallen, gehele getallen, kommagetallen, breuken, procenten en verhoudingen op hoofdlijnen te doorzien en er in praktische situaties mee te rekenen.

In dit kerndoel gaat het er vooral om dat leerlingen in praktische situaties moeten kunnen rekenen. Leerlingen moeten daarbij onder andere het volgende kunnen: 

  • inzien waarvoor gehele getallen worden gebruikt;
  • het tellen met gehele getallen;
  • de structuur van de telrij tot 1000 en groter inzien, om zo de volgorde en onderliggende ligging van de getallen te leren kennen;
  • het tientallig talstelsel inzien.

Zie de toelichting en verantwoording van kerndoel 26 voor wat leerlingen nog meer moeten kunnen om ermee in praktische situaties te kunnen rekenen. 

  • Kerndoel 27 - De leerlingen leren de basisbewerkingen met gehele getallen in elk geval tot 100 snel uit het hoofd uitvoeren, waarbij optellen en aftrekken tot 20 en de tafels van buiten gekend zijn.

Bij de basisbewerkingen gaat het om:

  • rekenfeiten, zoals getalsplitsingen, de basisoptellingen en -aftrekkingen tot 20, de tafels van vermenigvuldiging tot en met 10 en de deeltafels;
  • basisberekeningen, zoals het optellen en aftrekken tot 100 en het vermenigvuldigen en delen tot 100;
  • bijzondere rekenfeiten, zoals 4 x 25 = 100 en 4 x 15 = 60.

Deze basisbewerkingen moeten leerlingen uiteindelijk geautomatiseerd en gememoriseerd hebben (SLO, z.d.-u). Deze automatisering en memorisering wordt niet meegenomen in de beoordeling van de toetsen rekenen-wiskunde, maar bij de toetsen van hoofdrekenen. 

  • Kerndoel 28 - De leerlingen leren schattend tellen en rekenen.

Bij dit kerndoel moeten leerlingen moeilijk te bepalen hoeveelheden, lastige aantallen of lastige getallen overzichtelijk en hanteerbaar kunnen maken. Dit kan door hoeveelheden te vergelijken met bekende aantallen, ze handig te structureren of getallen te vervangen door beter hanteerbare getallen. Ze moeten weten in welke situaties ze moeten schatten en in welke het beter is om precies te tellen of te rekenen. Lees de toelichting en verantwoording van kerndoel 28 voor wat schattend tellen en rekenen nog meer inhoudt. 

  • Kerndoel 29 - De leerlingen leren handig optellen, aftrekken, vermenigvuldigen en delen.

Handig rekenen betekent het uit het hoofd rekenen, eventueel met ondersteuning van notities, zoals tussenantwoorden, tussenstappen of een schema. Hierbij moeten de berekeningen overzichtelijk worden gemaakt, moet het aantal stappen beperkt worden gehouden en de kans op fouten gereduceerd worden. Bij handig rekenen combineren leerlingen hun kennis van:

  • rekenfeiten en basisberekeningen (kerndoel 27);
  • eigenschappen van getallen en bewerkingen (kerndoel 26);
  • rekenstrategieën (staan in de inhoud van dit kerndoel).

In de inhoud van dit kerndoel worden de volgende rekenstrategieën genoemd: rijgen, splitsen, compenseren, analogie, verwisselen, omvormen, aanvullen, terugtellen, verdelen en verdubbelen = halveren. Er bestaan echter nog meer rekenstrategieën, zoals rekenen via de 10 en een keer meer of minder.

In het onderwijs gaat het bij handig rekenen om het rekenen met:

  • eenvoudige hele getallen tot 1000;
  • geld, tijd, maatgetallen en eenvoudige kommagetallen;
  • elementaire breuken, percentages en verhoudingen.

Lees hier de volledige toelichting en verantwoording voor verdere uitleg over handig rekenen en voorbeelden hiervan.

  • Kerndoel 30 - De leerlingen leren schriftelijk optellen, aftrekken, vermenigvuldigen en delen volgens meer of minder verkorte standaardprocedures.

Dit kerndoel bouwt voort op de het rekenen met hoofdrekenstrategieën. Wanneer de getallen complexer worden voldoen deze strategieën niet meer en moeten leerlingen kolomsgewijs kunnen rekenen. Bij dit kerndoel gaat het er daarom om dat leerlingen kolomsgewijs kunnen optellen, aftrekken, vermenigvuldigen en delen. Vervolgens moeten leerlingen cijfermatig kunnen optellen, aftrekken en vermenigvuldigen. Lees hier de volledige toelichting en verantwoording van kerndoel 30.

  • Kerndoel 31 - De leerlingen leren de rekenmachine met inzicht te gebruiken.

Bij dit kerndoel moeten leerlingen de rekenmachine kunnen bedienen en weten wanneer het efficiënter is om een berekening uit het hoofd uit te rekenen of juist de rekenmachine te gebruiken. Daarnaast moeten leerlingen de rekenmachine kunnen gebruiken in combinatie met het noteren van tussenstappen en -antwoorden en moeten ze de gegevens die uit de rekenmachine komen goed kunnen interpreteren. Lees de volledige toelichting en verantwoording van kerndoel 31 voor waarom leerlingen de rekenmachine moeten kunnen gebruiken.

Meten en meetkunde

  • Kerndoel 32 - De leerlingen leren eenvoudige meetkundige problemen op te lossen.

Bij meetkunde krijgen leerlingen een speciale taal voor vormen, plaatsaanduidingen en onderlinge posities en richtingen. Meetkunde is het denken over bijvoorbeeld de plaats van objecten in de ruimte, de richting van kijken en bewegen en routes. Bij dit kerndoel moeten leerlingen dus kunnen werken met bouwsels, bouwplaten, schaduwen, spiegels, plattegronden, kaarten en foto’s. Ook moeten ze kaarten kunnen tekenen en lezen en werken met schaal. Daarnaast moeten leerlingen een voorstelling van een ruimtelijke situatie kunnen maken en dit met concreet materiaal kunnen bouwen. Zie de volledige toelichting en verantwoording van kerndoel 32 voor wat meetkunde nog meer inhoudt. 

  • Kerndoel 33 - De leerlingen leren meten en leren te rekenen met eenheden en maten, zoals bij tijd, geld, lengte, omtrek, oppervlakte, inhoud, gewicht, snelheid en temperatuur.

Bij dit kerndoel moeten leerlingen in eerste instantie in concrete situaties meetinstrumenten kunnen gebruiken. Hierbij moeten ze passende meetstrategieën kunnen toepassen en inzicht hebben in belangrijke aspecten van het praktisch meten. Zo moeten ze de instrumenten kunnen aflezen, maar ook daadwerkelijk kunnen gebruiken. Vervolgens worden deze situaties steeds theoretischer en worden de maateenheden steeds meer los van de meetinstrumenten in beschouwing genomen. Zo worden verschillende maateenheden met elkaar in verband gebracht en op een rij gezet. Dit wordt steeds verder uitgebouwd, waarbij leerlingen uiteindelijk de verschillende maatstelsels moeten kunnen toepassen in situaties met een theoretisch aspect. Lees de volledige toelichting en verantwoording van kerndoel 33 voor voorbeelden van de opbouw van het leren rekenen met eenheden en maten.

Criterium 3: Worden alle elementen van zowel de kerndoelen als de referentieniveaus en/of de leerlijnen en tussendoelen afgedekt door de toets(en) van de betreffende specifieke vaardigheid?

Boom

Ja, omdat de (sub)domeinen van het rekenen bijna volledig worden getoetst. Niet alle elementen van de kerndoelen worden getoetst, maar wel een groot gedeelte. Zo worden er weinig reken-wiskundige problemen en geen praktische situaties gebruikt. Aangezien dit ook al in criterium 4 wordt meegenomen, wordt dit hier niet gedaan. Daarnaast zijn de kerndoelen niet leidend in de beoordeling, maar het referentiekader. 

  • Domeinen referentiekader en tussendoelen

Hieronder volgt een overzicht van de subdomeinen die niet worden getoetst:

  • Getallen - Bewerkingen
    • Rekenen met de rekenmachine
  • Meten en meetkunde - Meetkunde 
    • Construeren
    • Opereren met vormen en figuren

De subdomeinen van Getallen - Getalbegrip en Verbanden worden getoetst.

  • Kerndoelen

Kerndoelen 27, 28 en 29 (handig rekenen wordt 1 keer in een opgave expliciet getoetst, maar veelal indirect) worden getoetst. 

De volgende kerndoelen worden gedeeltelijk getoetst: 

  • Bij kerndoel 23 wordt het gebruik van wiskundetaal bij communicatie en redeneren niet getoetst.
  • Kerndoel 24: in de toets worden er weinig tot geen praktische reken-wiskundige problemen gebruikt. Rekenwiskundige problemen op het gebied van het bedenken en verbeteren van rekenprocedures en het rekenen met de rekenmachine worden niet getoetst.
  • Kerndoel 26: het rekenen in praktische situaties wordt weinig tot niet getoetst. Daarnaast worden niet alle situaties en voorbeelden die genoemd werden in de toelichting en verantwoording getoetst.
  • Kerndoel 30: kolomsgewijs vermenigvuldigen wordt niet getoetst.
  • Kerndoel 33: het meten van eenheden en maten door middel van het gebruik van een meetinstrument wordt niet getoetst, behalve bij lengte.  

De volgende kerndoelen worden niet getoetst: 25 (leerlingen hoeven hun oplossingen niet te onderbouwen), 31, en 32. 

Cito

Ja, omdat de (sub)domeinen van het rekenen bijna volledig worden getoetst. Niet alle elementen van de kerndoelen worden getoetst, maar wel een groot gedeelte. Een aantal elementen hiervan en het subdomein Meetkunde: construeren is niet goed te toetsen met deze toetsvorm.

  • Domeinen referentiekader en tussendoelen

Het subdomein Meten en meetkunde - Meetkunde: construeren wordt niet getoetst. De (sub)domeinen van Getallen - Getalbegrip, Getallen - Bewerkingen, Verhoudingen, Meten en meetkunde - Meten en Verbanden worden getoetst. Hierbij is het subdomein Rekenen met de rekenmachine optioneel.

  • Kerndoelen

De volgende kerndoelen worden getoetst: 26, 27, 28, 29 en 31. 

De volgende kerndoelen worden gedeeltelijk getoetst:

  • Bij kerndoel 23 wordt het gebruik van wiskundetaal bij communicatie en redeneren niet getoetst. Wel moeten leerlingen aanduidingen in spreektaal naar getallen met cijfers omzetten.
  • Kerndoel 24: er wordt niet getoetst of leerlingen hun redeneringen helder weer kunnen geven. Rekenwiskundige problemen op het gebied van het bedenken en verbeteren van rekenprocedures worden niet getoetst.
  • Kerndoel 30: het kolomsgewijs vermenigvuldigen wordt niet getoetst.
  • Kerndoel 32: er zijn geen vragen waarbij het werken met netwerken, vertakte vormen, schaduwen en foto's wordt getoetst.
  • Kerndoel 33: er wordt niet getoetst of leerlingen eenheden en maten kunnen meten, behalve bij lengte, waarbij leerlingen een lineaal moeten gebruiken om te meten. Bij andere eenheden en maten, bijvoorbeeld bij inhoud en gewicht, moeten leerlingen het meetinstrument kunnen aflezen, maar niet daadwerkelijk een meting uitvoeren. Bij temperatuur wordt ook het rekenen niet getoetst.

Kerndoel 25 wordt niet getoetst.

Diataal

Ja, ondanks dat niet alle subdomeinen worden getoetst, geeft de toets een goed beeld van de rekenvaardigheid van de leerlingen. 

  • Domeinen referentiekader en tussendoelen

Hieronder volgt een overzicht van de subdomeinen die niet worden getoetst:

  • Getallen - Bewerkingen
    • Combinaties van en relaties tussen bewerkingen
    • Rekenen met de rekenmachine
  • Meten en meetkunde - Meten
    • Meten: inhoud
    • Meten: temperatuur
  • Meten en meetkunde - Meetkunde
    • Meetkunde: oriëntatie in de ruimte
    • Meetkunde: construeren

De (sub)domeinen Getallen - Getalbegrip, Verbanden en Verhoudingen worden getoetst.

  • Kerndoelen

De volgende kerndoelen worden getoetst: 26, 27, 28 en 29.

De volgende kerndoelen worden gedeeltelijk getoetst:

  • Bij kerndoel 23 wordt het gebruik van wiskundetaal bij communicatie en redeneren niet getoetst. 
  • Kerndoel 24: er wordt niet getoetst of leerlingen hun redeneringen helder weer kunnen geven. Rekenwiskundige problemen op het gebied van het bedenken en verbeteren van rekenprocedures worden niet getoetst en het rekenen met de rekenmachine worden niet getoetst.
  • Kerndoel 30: niet alle standaardprocedures worden getoetst. 
  • Kerndoel 32: niet alle elementen van meetkunde worden getoetst.
  • Kerndoel 33: het meten van eenheden en maten wordt niet getoetst. Bij temperatuur en gewicht wordt ook het rekenen niet getoetst. 

De volgende kerndoelen worden niet getoetst: 25 en 31.

IEP

Ja, niet alles van de kerndoelen wordt getoetst, maar wel bijna alles van het referentiekader. De elementen van de kerndoelen die niet getoetst worden, zijn met name delen die in deze toetsvorm niet getoetst kunnen worden.

  • Domeinen referentiekader en tussendoelen

Het subdomein Getallen - Bewerkingen: Rekenen met de rekenmachine wordt niet getoetst. Het domein Verbanden en de subdomeinen van Getallen - Getalbegrip, Verhoudingen, Meten en meetkunde - Meten en Meten en meetkunde - Meetkunde worden getoetst.

  • Kerndoelen

De volgende kerndoelen worden getoetst: 26, 27, 28 en 29.

De volgende kerndoelen worden gedeeltelijk getoetst:

  • Bij kerndoel 23 wordt het gebruik van wiskundetaal bij communicatie en redeneren niet getoetst.
  • Kerndoel 24: er wordt niet getoetst of leerlingen hun redeneringen helder weer kunnen geven. Wel moeten de leerlingen een formele bewerking bij een som kunnen geven. Rekenwiskundige problemen op het gebied van het bedenken en verbeteren van rekenprocedures en het rekenen met de rekenmachine worden niet getoetst.
  • Kerndoel 30: Het kolomsgewijs vermenigvuldigen wordt niet getoetst. Wel herhaald optellen, wat een voorloper is van het kolomsgewijs vermenigvuldigen.
  • Kerndoel 32: de volgende elementen van meetkunde worden niet getoetst: 
    • Plaats van objecten in de ruimte;
    • Netwerken, vertakte vormen;
    • Hoe vormen zijn samengesteld uit andere vormen;
    • Het vergroten en verkleinen van vormen en afbeeldingen.
    • Ook zijn er geen vragen waarbij leerlingen moeten werken met foto’s.
  • Kerndoel 33: het meten van eenheden en maten wordt niet getoetst, behalve bij lengte. 

De volgende kerndoelen worden niet getoetst: 25 en 31.

Criterium 4

Heeft de toets passende vraagvormen of manier(en) van toetsen?

Bij het toetsen van rekenen-wiskunde kunnen getal- en contextopgaven gebruikt worden. Bij getalopgaven, ook wel kale sommen, wordt er geen context gegeven. Contextopgaven kunnen verschillend worden vormgegeven, namelijk met een talige- of beeldende context (Barneveld, 2014). 

Over welke opgaven het best gebruikt kunnen worden, bestaat veel discussie. Uit verschillende onderzoeken blijkt dat leerlingen hoger scoren op beeldende contextopgaven dan op de talige opgaven (Barneveld, 2014; Hickendorff & Janssen, 2009). Het wordt daarbij steeds duidelijker dat met name talige contextopgaven nadeliger zijn voor leerlingen dan de andere soorten opgaven. Het blijkt namelijk dat het gebruik van taal in rekentoetsen een belemmering kan zijn voor met name leerlingen met een anderstalige achtergrond en/of zwakke taalvaardigheden (Barneveld, 2014; Hickendorff & Janssen, 2009). Dit komt met name doordat er vaak te veel tekst wordt gebruikt (Van Eerde, 2009). Hierdoor zou het kunnen dat leerlingen de som niet begrijpen door hun zwakke taalvaardigheid, terwijl hun rekenvaardigheid wel voldoende is. Taal zou dus wel gebruikt kunnen worden in de opgaven, maar zo min mogelijk. Overigens blijkt uit onderzoek dat in de rekenles gerichte, talige ondersteuning van taalzwakke leerlingen wel succesvol is (Smit, 2013). Verder kan het gebruik van taal voor sommige leerlingen, waaronder rekenzwakke leerlingen, teveel ballast voor hun werkgeheugen zijn (Van Groenestijn et al., 2011). Rekenzwakke leerlingen en zwakke lezers zijn daarom meer gebaat bij sterke visuele contexten met weinig tekst en één duidelijke vraag die moet worden beantwoord (Van Groenestijn et al., 2011). 

Het gebruik van visuele contexten heeft echter ook zo zijn nadelen. Zo wordt het leerlingen hierdoor soms te makkelijk gemaakt (Barneveld, 2014) en blijken anderstalige leerlingen de illustraties soms verkeerd te interpreteren of deze zelfs te negeren (Hickendorff & Janssen, 2009). Dit komt echter niet uit het onderzoek van Hoogland en collega’s (Barneveld, 2014). Dat zijn redenen voor deskundigen in het rekenonderwijs om ervoor te pleiten om alle talige, contextrijke sommen af te schaffen en alleen kale rekensommen te gebruiken in toetsen of in de toetsen minstens 30 procent kale sommen op te nemen. Dit is echter geen goede oplossing. Met kale rekensommen toets je namelijk alleen of je bewerkingen kunt oplossen, terwijl het bij het rekenen ook gaat om het oplossen van kwantitatieve problemen. Het oplossen van bewerkingen is zelfs maar een klein deel van het rekenproces en mag dus eigenlijk niet meer dan 30 procent van de toets beslaan. Begrijpen wat je moet uitrekenen is veel belangrijker (Barneveld, 2014). Het is daarom belangrijk dat rekentoetsen bestaan uit een combinatie van contextsommen en kale opgaven, waarbij deze contextsommen beeldende contextopgaven met zo weinig mogelijk tekst moeten zijn.

Boom

Nee, de toetsen bestaan voor het grootste gedeelte uit kale sommen (meer dan 30 procent) en zijn productgericht. Boom LVS geeft hierbij aan dat dit een bewuste keuze is geweest, om hierdoor zo weinig mogelijk beroep te doen op de taalvaardigheid van de leerlingen (Van Vugt, De Vos, Milikowski & Milikowski, 2021). De contextsommen zijn zo weinig mogelijk talig en meer beeldend. 

Opmerking: Boom LVS heeft de ontwikkeling van een toets Rekenen-Wiskunde Contextopgaven voor de bovenbouw van het basisonderwijs in het najaar 2022 gepland om zo de vaardigheid van leerlingen in het oplossen van contextopgaven te meten.

Cito Nee, de toetsen bevatten voor ongeveer 50 procent formele opgaven en 50 procent functionele opgaven (contextsommen) en zijn productgericht. De contextsommen zijn zo veel mogelijk beeldopgaven en er wordt zo eenvoudig mogelijke taal gebruikt. Een klein deel van de toetsen bestaat uit meerkeuzevragen. De meerderheid van de toets bestaat uit open vragen, waarbij er een getal als antwoord ingevuld moet worden. Het gebruik van meerkeuzevragen is geen passende manier. Zie onder de tabel voor verdere uitleg hiervan.
Diataal Nee, doordat de meeste toetsen uit meer dan 30 procent kale sommen bestaan en productgericht zijn. De toets bestaat uit kale opgaven en contextopgaven. Bij de contextopgaven is taal zo veel mogelijk vervangen door beeld. In leerjaar 3 bestaat de toets uit meer kale opgaven dan uit contextopgaven. Deze verdeling verschuift langzaam, waarbij vanaf eind leerjaar 4 de toetsen meer context- dan kale opgaven bevatten. De kale opgaven beslaan echter meestal meer dan 30 procent van de toetsen. 
IEP Nee, doordat de toetsen productgericht zijn. De toetsen voldoen wel aan de bovenstaande criteria. Zo bestaan de toetsen in leerjaren 3 tot en met 5 uit 70 procent contextopgaven en 30 procent kale opgaven. In leerjaren 6 tot en met 8 bestaan de toetsen uit 80 procent contextopgaven en 20 procent kale opgaven. Er wordt zoveel mogelijk gebruik gemaakt van open vragen. Afbeeldingen worden aan contextopgaven toegevoegd als deze functioneel zijn en/of om de context te verduidelijken. De vraagvormen worden echter verkeerd ingezet. Zie hieronder voor uitleg.

De toetsen van IEP heeft de juiste verhouding van passende vraagvormen voor het doel van de toets, maar deze worden op een verkeerde manier gebruikt. Bij namelijk alle toetsen, ook die van Boom LVS, Cito en Diataal, draait het om het geven van goede antwoorden, terwijl leerlingen tijdens het rekenen vaak een rij denkstappen moeten zetten voordat ze tot een antwoord komen. Wanneer leerlingen echter alleen een antwoord hoeven te geven, wordt dit proces niet duidelijk en weten leerkrachten niet waarin het fout is gegaan. Zit dat bijvoorbeeld in het verkeerd berekenen of wordt er een verkeerde rekenstrategie gebruikt? Daarnaast kunnen leerlingen een goed antwoord gegokt hebben of wel tot het goede antwoord zijn gekomen, maar een verkeerde strategie gebruikt hebben. Wanneer leerkrachten dit rekenproces wel weten, kunnen zij hun leerlingen veel gerichtere hulp geven en hen beter ondersteunen in hun rekenontwikkeling. 

Verschillende leveranciers hebben aangegeven dat leerlingen kladpapier bij de toets mogen gebruiken. Zo levert IEP denkpapier bij de toets. Hierop kunnen leerlingen tussenstappen opschrijven. Het denkproces wordt hierdoor duidelijk. Dit denkpapier wordt echter niet meegenomen in de beoordeling. Leveranciers wordt daarom aanbevolen om rekentoetsen te maken waarbij leerlingen hun denkproces tijdens het rekenen moeten laten zien en waarbij leerlingen ook beoordeeld worden op dit denkproces. Dit hoeft niet te betekenen dat dit bij elke opgave gedaan moet worden, zoals niet bij automatiseringsopgaven, maar in ieder geval wel bij opgaven met meerdere denkstappen. Cito speelt hier al gedeeltelijk op in, door naast de LVS-toets een verdiepend rekengesprek aan te bieden, waarin leerlingen hun denkproces kunnen laten zien. Daarvoor hebben ze een instructie en stappenplan gemaakt die zowel ingaan op het rekenproces als de rekenbeleving.

Criterium 5

Wordt er in de rapportage uitgesplitst in de verschillende subonderdelen van de specifieke vaardigheid?

Boom Ja, de score kan uitgesplitst worden in de rekendomeinen.
Cito

Ja, de score kan uitgesplitst worden in verschillende categorieën van rekenen. Deze categorieën verschillen per toetsniveau.

Ook kan het verschil in score op functionele en formele opgaven geanalyseerd worden en kan er per leerdoel geanalyseerd worden.

Diataal Ja, de score kan uitgesplitst worden in de rekendomeinen. 
IEP Ja, de score kan uitgesplitst worden in de rekendomeinen (getallen, verhoudingen, meten en meetkunde, verbanden).
 

Gerelateerd

E-learning cursus
Kennis waar je direct mee aan de slag kunt?
Kennis waar je direct mee aan de slag kunt?
De online cursussen van E-WISE sluiten perfect aan op praktijk. Vraag nu een gratis proefcursus aan!
E-Wise 
Beurs
Kom naar de NOT 2023!
Kom naar de NOT 2023!
Het event voor onderwijsprofessionals in KO, PO & VO. Van 24 t/m 28 jan 2023 Jaarbeurs te Utrecht.
NOT 
Congres
Omgaan met verschillen in de rekenles
Omgaan met verschillen in de rekenles
Aansluiten op de onderwijsbehoeften van je leerlingen
Medilex Onderwijs 
Scholing
Toetsen en evalueren
Toetsen en evalueren
Welke vormen zijn er en hoe zet jij ze in?
oo.nl 
ICT oplossingen
Wil jij je ook geen zorgen meer maken?
Wil jij je ook geen zorgen meer maken?
Alles in één keer goed geregeld met de laptops van The Rent Company. Kies voor gemak en zekerheid.
The Rent Company 
Luchtkwaliteit
Schonere lucht met licht
Schonere lucht met licht
Tot 99,99% minder virussen in 10 minuten dankzij UV-C desinfecterende luchtreinigers. Dat kan!
Signify 
Wil jij je ook geen zorgen meer maken?Tegenvallende toetsresultaten
De resultaten vallen tegen. Wat nu?.
Jos Cöp
Diagnosticerend onderwijzen bij rekenen
Diagnosticerend onderwijzen bij rekenen.
Korstiaan Karels
Volgen van de ontwikkeling
Volgen van ontwikkeling: evalueren - normeren - LVS - rapportage
Arja Kerpel
Hoe de eindtoets het curriculum en het onderwijsmodel bepaalt
Toetsing in het basisonderwijs: nuttig of belemmerend?
Karen Heij
Referentieniveaus basisonderwijs
De referentieniveaus voor het basisonderwijs
Maarten van der Steeg
Leren van data
Laat het LVS voor jou werken, en niet andersom!
Machiel Karels
Minimale toetsing in schema gezet
Minimale Toetsing LVS
Teije de Vos
Leerlingvolgsysteem
Leerlingvolgsysteem: dat wordt een stuk makkelijker!
Teije de Vos
Route 8 en IEP eindtoets
Wat valt er te kiezen naast de Centrale Eindtoets Basisonderwijs?
Gerdineke van Silfhout
Citoscore misverstanden
Meten is niet alles weten
Teije de Vos
Klimroos leerlingvolgsysteem
Klimroos
Bertine van den Oever
Een sober leerlingvolgsysteem
Een sober leerling- en onderwijsvolgsysteem, dat kan en mag!
Teije de Vos
Minder standaardtesten
Standaardtesten in het onderwijs. Moet dat nou?
Dick van der Wateren
Wegcijferen door toetsen
Laat je niet wegcijferen
Paul Filipiak


Inschrijven nieuwsbrief

Inschrijven nieuwsbrief



Inschrijven nieuwsbrief

Wat is tegenwoordig nog de waarde van kennis?
Wat is tegenwoordig nog de waarde van kennis?
redactie
Leerlingvolgsysteem in een video van één minuut uitgelegd
Leerlingvolgsysteem in een video van één minuut uitgelegd
redactie
Toetsen in een video van één minuut uitgelegd
Toetsen in een video van één minuut uitgelegd
redactie
Referentieniveaus in een video van één minuut uitgelegd
Referentieniveaus in een video van één minuut uitgelegd
redactie
Goed leren rekenen op de basisschool: Tjipcast 005
Goed leren rekenen op de basisschool: Tjipcast 005
redactie
Is het tijd om ons onderwijs anders vorm te geven? Tjipcast 011
Is het tijd om ons onderwijs anders vorm te geven? Tjipcast 011
redactie
Effecten van aanpakken voor een soepele overgang naar po
Vier jaar! Hoe stimuleer je een soepele overgang naar de basisschool?
Effect van leesmethodes op leesvaardigheid
Welk effect hebben leesmethodes?
Hulpstappen bij het spellen
Welke hulpstap is voor leerlingen effectief bij het leren spellen?
Interventies versterken van motivatie volwassen NT2 deelnemers
Hoe versterk je online het actief leren van volwassen NT2-deelnemers?
Effect vooraf toetsen rekenprestaties en zelfvertrouwen
Wat is het effect van vooraf toetsen?
Onderwijsbehoeften van sterke rekenaars
Hoe geef je sterke rekenaars wat ze nodig hebben aan uitdaging?
Hoe bevorder je studievaardigheden en zelfsturing van laagopgeleide nt2 leerlingen?
Hoe bevorder je zelfsturing van laagopgeleide nt2-leerlingen?
Helpen ondersteuningskaarten bij dyslexie en rekenproblemen?
Zijn ondersteuningskaarten helpend bij dyslexie en rekenproblemen?
Effect modelleren leesstrategie hardop denken volwassenen
Hardop denken: goede strategie voor volwassen leerders?
Intern begeleiders passend onderwijs hoogbegaafde
Wat is de rol van Intern begeleiders bij het bieden van extra ondersteuning?
Verdieping reken wiskundeonderwijs po
Naar verdieping van het reken-wiskundeonderwijs op de basisschool
Fysieke activiteit en leerprestaties
Onderzoek naar relaties tussen fysieke activiteit en leerprestaties
Toetsen-leertrajecten
Gebruik van toetsen bij het plannen van leertrajecten
Formatief toetsen po
Selfassessment voor formatief toetsen van basisschoolleerlingen
Begrip door zelftoetsen
Beter begrip van informatie in teksten door zelftoetsen
[extra-breed-algemeen-kolom2]



assessment
cito
cito-score
kerndoelen
leerlingvolgsysteem
leerprestaties
normering
referentieniveau
rekenen
taalontwikkeling
toetsen
toetskalender
tussendoelen
wiskunde

 

Mis geen bijdragen

Inschrijven nieuwsbrief

Volg wij-leren.nl

Volg ons op LinkedIn Volg ons op twitter Volg ons op facebook Volg ons op instagram Volg ons op pinterest