Kennisplatform
Hoe geef je een passend schooladvies?

De essentie van een effectieve voorbereiding van de rekenles (2)

Dolf Janson
Senior onderwijsadviseur en -ontwikkelaar bij Jansonadvies   

Janson, Dolf, De Pater-Sneep, Martie, (2015) De essentie van een effectieve voorbereiding van de rekenles (2),
Geraadpleegd op 13-12-2024,
van https://wij-leren.nl/aansluiten-onderwijsbehoeften-voorbereiding-rekenles.php
Geplaatst op 14 augustus 2017
Effectieve voorbereiding van de rekenles (2)

Dit artikel is samen geschreven met Martie de Pater.

Aansluiten bij de onderwijsbehoeften van je leerlingen betekent: aansluiten bij hun ervaringen, hun voorkennis en hun inzichten.

Als leraar vraag je je dan twee dingen af:

  1. Wat weten en kunnen mijn leerlingen al en in hoeverre zijn ze zich dat zo bewust dat ze het kunnen verwoorden en/of demonstreren?
  2. Wat zijn de essenties in de leerstof van dit leerjaar in het algemeen en van de komende periode in het bijzonder?

Natuurlijk kun je voor vraag 1 een overzicht met de groei van Cito-vaardigheidsscores benutten. Daarmee signaleer je leerlingen die te weinig profijt hebben gehad van het onderwijs in het afgelopen halfjaar. Dat is nuttig, maar wel een beetje laat. Bovendien baseer je de vooruitgang dan alleen op antwoorden en niet op de manier van uitrekenen. Om in de les te kunnen aansluiten bij wat zij nodig hebben heb je al eerder concrete informatie nodig.

Aan het begin van het schooljaar kan je rustig een week uittrekken om je leerlingen zichtbaar te laten maken wat zij al weten en kunnen. Aan de hand van die posters of mindmaps kan je met hen in gesprek over hoe ze daarmee omgaan. Je zult ook later in het jaar regelmatig ruimte maken om hen even te observeren en te bevragen over hun voortgang, hun manier van oefenen en de ervaren effecten. Ook in groepsgerichte nabesprekingen over aanpakken en hun effecten, kan je zulke informatie verzamelen.

Antwoord geven op vraag 2 vraagt dat je niet naar de activiteiten (de opgaven uit je methode) kijkt, maar naar de doelen en de cruciale leermomenten die daarmee samenhangen. Als dit de essentie is, wat moeten mijn leerlingen dan meemaken, wat moeten ze onderzoeken, waarmee moeten ze ervaring gaan opdoen, wat moeten ze gaan beheersen?
Hierbij kan het Hoofdlijnenmodel (Van Groenesteijn, Borghouts & Janssen, 2012) behulpzaam zijn. Een leerlijn bij rekenen/wiskunde omvat in dat model vier aspecten:

  1. Begripsvorming.
  2. Procedureontwikkeling
  3. Vlot rekenen
  4. Flexibel toepassen.  

Deze fasen zullen elkaar in de praktijk wat overlappen. Zo kunnen de fasen 2, 3 en 4 elk bijdragen aan de verdieping van het inzicht van een concept en het gebruik van de bijpassende termen.


Vier fasen in rekenontwikkeling

1. Begripsvorming en conceptontwikkeling

De kern van deze fase is dat leerlingen ervaren en begrijpen wat de essenties van rekenwiskundige concepten en begrippen zijn. Dan kan het gaan om de vraag wat een bewerking oplost: wat maakt optellen handiger dan tellen, of vermenigvuldigen hier handiger dan optellen? Wat maakt verhoudingsgetallen anders dan ‘gewone’ getallen en waarvoor is dat handig? Steeds horen hierbij specifieke woorden en formuleringen. Deze rekentaal hoort daardoor ook bij deze eerste fase. Informeel leren speelt bij de conceptontwikkeling een grote rol. Zo kan je het best bij de verschillen in voorkennis aansluiten (De Pater-Sneep, 2012; Janson, 2015).

Bij het concept ‘breuk’ kan het zowel gaan om een verdeling als om een verhouding. In dat laatste geval is het in stukken snijden van een pizza niet de vanzelfsprekende handeling om te komen tot het inzicht dat een breuk een verhouding weergeeft. Om hierover te kunnen spreken met elkaar zullen woorden als teller, noemer, deel en geheel niet alleen bekend moeten zijn, maar ook (via mentale beelden) betekenis voor de leerlingen hebben.

2. Ontwikkelen van procedures en algoritmen en de verkorting daarvan

De kern van deze fase is het herkennen van de passende bewerking en het vervolgens zetten van de juiste stappen in de meest logische volgorde. De bedoeling is om dit steeds efficiënter (korter en/of handiger) te doen. In deze fase staat daarom niet het antwoord centraal, maar de wijze waarop je tot je antwoord kunt komen en de stappen om vervolgens tot een nog efficiëntere oplossingsprocedure te komen. Om die reden is samenwerkend leren bij uitstek geschikt in deze fase.

Ook het combineren van procedures behoort tot deze fase, zoals het leren rekenen met steeds grotere getallen en complexere berekeningen.
Bij het leren automatiseren van bewerkingen (zoals het direct herkennen van al bekende tafelproducten als hulpsommen voor nog niet bekende tafelproducten) (Janson& De Pater-Sneep, 2012) gaat het om het vlot leren herkennen van de kortste route naar het antwoord, die aansluit bij de eigen voorkennis.

3. Vlot kunnen uitrekenen en deze vaardigheid onderhouden

Hier gaat het om het vlot kunnen toepassen van fase 2. De kern van wat hier te leren is, zijn snelheid en accuratesse. Om die vaardigheid te kunnen handhaven is regelmatig onderhoud nodig, vanuit de vraag: Kan ik het nog steeds zo vlot en precies?

Hier gaat het om het vlot gebruiken van een verkorte uitrekenprocedure, het memoriseren van rekenfeiten, zoals optellen en aftrekken tot 20 of de vermenigvuldig- en deeltafels van 1 t/m10. Opdrachten als ‘even oefenen’ horen hierbij, mits de leerling over de voorkennis beschikt die nodig is voor vlot rekenen.

4. Toepassen van de verworven rekenvaardigheid in levensechte contexten of in een beschrijving daarvan

Deze laatste fase is te beschouwen als de proef op de som: is er nu sprake van gecijferdheid? Kunnen leerlingen hun eerder opgedane inzichten, kennis en vaardigheden selecteren en combineren om het gepresenteerde probleem op te lossen?

Het toepassen van rekenvaardigheid bij andere vakken, het lezen van grafieken en het kunnen gebruiken van de schaalaanduiding op een kaart, zijn voorbeelden van toepassingen. Ook het (correct) interpreteren van afbeeldingen, reclame-uitingen en nieuwsberichten met getallen en/of maten horen hierbij. In toetsen zal daarom de vaardigheid uit deze fase het meest aan de orde komen.


Verschil maken

Met deze fasen in gedachten moet het lukken om differentiatie concreter in te vullen. Je hebt nu aanknopingspunten om de onderwijsbehoeften van je leerlingen in ieder geval inhoudelijk te bepalen. Daarnaast zijn er nog wel andere factoren van invloed, zoals de mate waarin zij beschikken over executieve functies (Dawson & Guare, 2009). Ook die kunnen een reden zijn om leerlingen op papier te groeperen en met enige regelmaat met hen aan zo’n vaardigheid aandacht te besteden.

Executieve functies

Executieve functies zijn vaardigheden die nodig zijn bij denken en bij doen. Kinderen moeten die ontwikkelen. Ook volwassenen hebben deze vaardigheden nodig. Als bepaalde executieve functies (nog) onvoldoende ontwikkeld zijn, kan dat het cognitief en/of gedragsmatig functioneren belemmeren.

Executieve functie gericht op denkenExecutieve functies gericht op doen
werkgeheugenimpulscontrole (‘respons-inhibitie’)
planning en prioriteringemotieregulatie
organisatievolgehouden aandacht (focus)
time-managementtaakinitiatie
metacognitiedoelgericht gedrag
 flexibiliteit

Verschillen tussen leerlingen zijn door inzicht in executieve functies niet meer een lastige verstoring van de geplande les. Zo ervaar je wat het betekent als Hattie (2012) op basis van heel veel onderzoeken concludeert dat een leraar het verschil maakt. Dat is tenslotte waarom je dit vak hebt gekozen! Dat sluit aan bij wat handelingsgericht werken is: zo lesgeven dat de leerlingen doelgericht kunnen handelen, en dus kunnen werken in hun zone van naaste ontwikkeling. Daarbij gaat het niet alleen om wat je de leerlingen laat doen, maar ook hoe.

Maatwerk

De methode hoeft daarvoor niet meteen te worden afgeschaft. Wel moet je beseffen dat deze nooit maatwerk kan leveren voor je groep van dit jaar, net zomin als die dat vorig jaar deed of volgend jaar zal doen. De onderwerpen en doelen van de methode (vaak te vinden in het algemene deel van de handleiding) kan je als leidraad gebruiken voor de volgorde en de globale planning. Voor de planning van je rol als leraar in de weken die volgen op de aftrap, zal het gaan om de precieze afstemming van de inhouden en oefenvormen op de concrete leerlingen van nu.

Wie bij een bepaald rekenonderwerp moet oefenen met de procedure van uitrekenen, zal meer zijn gebaat bij mondeling benoemen (en misschien tekenen), dan bij schriftelijk antwoorden invullen. Dit betekent ook: samenwerken met een maatje in plaats van alleen. Als je snapt welk leerproces leerlingen moeten doormaken, dan vervalt de vanzelfsprekendheid van doodse stilte in een rekenles.
Daarom is het nodig om je tijdens je voorbereiding vooral te concentreren op de keuzes die je moet maken om de leerlingen de goede dingen op de juiste manier te laten doen, opdat zij door jou kunnen leren.

In de praktijk

Vragen bij je voorbereiding

  • Als dit de stof voor de komende weken is, aan welke doelen moeten mijn leerlingen dan werken?
  • In welke fase van de leerlijn moeten welke leerlingen aan de gang?
  • Welke opgaven uit het boek zijn voor wie bruikbaar? In welke volgorde?
  • Hoe moeten de verschillende leerlingen hiermee aan de slag?
  • Hoe kan ik met deze gegevens subgroepjes samenstellen die ik kan begeleiden en/of instructie geven?
  • Op welke dag(en) kan ik welk groepje het beste plannen?
  • Welke leerlingen hebben naast de rekeninhoud ook instructie of begeleiding nodig bij hun manier van (samen)werken?
  • Welke leerlingen zijn, gezien hun doel, meer gebaat bij feedback en een goede nabespreking en welke leerlingen zijn (ook) gebaat bij een vorm van instructie?

Belangrijk is dat de leerlingen zelf weten op welk moment en op welke manier zij steun van je kunnen verwachten en ook begrijpen waarom (Vanhoof et al, 2012). Dit vraagt onder meer dat zij ook weten aan welk doel zij werken. Zo is het voor hen mogelijk om actief te zijn en zich verantwoordelijk te voelen voor het resultaat.

Literatuur

  • Dawson, P. & Guare, R. (2009). Slim maar… Help kinderen hun talenten benutten door hun executieve functies te versterken. Amsterdam: Hogrefe Uitgevers.
  • Dweck, C.S., (2006); Mindset. New York: Ballantine.
  • Van Groenesteijn, M., Borghouts C. & Janssen C. (2012). Protocol Ernstige RekenProblemen en Dyscalculie (ERWD) po en s(b)o. Assen: Van Gorcum.
  • Hattie, J. (2012); Visible learning for teachers – Maximizing impact on learning. Oxford: Routledge.
  • Janson, D.J. (2014). Zelf laten denken helpt. In: SpeZiaal 7 (4).*)
  • Janson, D.J. (2014). Doelen stellen met je leerlingen (Kwaliteitskaart). Den Haag: School aan Zet. *)
  • Janson, D.J. & Pater-Sneep, M.de (2012). Vermenigvuldigen is meer dan tafels leren. In: Pulse primair onderwijs 4 (4), 12-16.*)
  • Laud, L. (ed.) (2011). Differentiated Instruction in Literacy, Math & Science. Thousand Oaks (Cal): Corwin – a SAGE Company.
  • Pater-Sneep, M.de (2012). Wie kan delen kan vermenigvuldigen. In: Volgens Bartjens 31 (4), 4-6.
  • Vanhoof, J., Broek, M. van de, Penninckx, M.,Donche, V., Petegem, P. van (2012). Leerbereidheid van leerlingen aanwakkeren. Leuven: Acco.
  • Weyrauch, A. & Fauser, P. (2009). Was Hänschen sieht und dann versteht, ihm niemals aus dem Kopfe geht. Verständnisintensives Lernen: Theorie und Praxis. Jena: EULE/IMAGINATA
  • de met *) aangemerkte teksten zijn te vinden op http://www.janson.academy/publicaties

Kijktips

Dit artikel is ook geplaatst in JSW.

Heb je vragen over dit thema? Stel ze in de onderwijs community binnen de Wij-leren.nl Academie!

Dossiers

Uw onderwijskundige kennis blijft op peil door 3500+ artikelen.